Основополагающие принципы и понятия физического естествознания

В качестве итога изложения концептуальных принципов и понятий физического естествознания, содержащихся в главах 3, 4 и в предыдущих пунктах, можно констатировать существование следующих фундаментальных принципов, представленных ниже с их кратким разъяснением.

  1. Принцип относительности — закон, состоящий в том, что любой процесс протекает одинаково в изолированных инерциальных материальных системах, системах, покоящихся либо равномерно прямолинейно движущихся относительно друг друга. Принцип относительности утверждает равноправие всех инерциальных систем отсчета. Особо следует выделять принцип относительности к средствам наблюдения, устанавливающего связь макро- и микромиров.
  2. Принцип распространения света — скорость распространения света в вакууме (пустоте) не зависит от скорости источника и является предельной для любых физических скоростей.
  3. Принцип суперпозиции в классической физике — утверждение, состоящее в том, что результирующий эффект от независимых воздействий представляет собой линейную сумму эффектов от каждого воздействия в отдельности.

Принцип суперпозиции состояний в квантовой физике — утверждение, состоящее в том, физическая система может находиться как в состояниях, описываемых двумя (или несколькими) волновыми функциями, так и в состояниях, описываемых любой линейной комбинацией этих функций. Принцип суперпозиции можно понимать как принцип линейных независимых наложений воздействий или состояний друг на друга.

  • Принцип корпускулярно-волнового дуализма (принцип волновых свойств материи) — утверждение, заключающееся в том, что любые микрообъекты материи (фотоны, электроны, протоны, атомы, молекулы и др.) обладают свойствами и частиц (корпускул) и волн, количественные связи энергии, массы, импульса и частоты которых определяются соотношениями де Бройля.
  • Принцип неопределенности Гейзенберга — принцип квантовой физики, утверждающий, что характеризующие физическую систему так называемые дополнительные физические величины (координата и импульс, энергия и время и др.) не могут одновременно принимать точные значения и не могут быть потому одновременно точно измерены. Количественная связь неопределенностей (погрешностей) в определении дополнительных величин ограничивается их произведением, равным или превосходящим постоянную Планка.
  • Принцип тождественности частиц (микромира) — положение квантовой физики, согласно которому состояния системы частиц (микрообъектов), получающиеся друг из друга перестановкой местами тождественных (неотличимых) частиц, нельзя различить ни в каком эксперименте, и такие состояния должны приниматься как одно физическое состояние. Из указанного принципа следует симметрия волновой функции системы тождественных частиц.
  • Принцип запрета Паули — закон природы, согласно которому в какой-либо квантовой системе тождественных частиц с полуцелым спином (например, электроны, протоны и др.) две или более частицы не могут одновременно находиться в одном и том же состоянии (именно это запрещено быть в одинаковом состоянии).

8.  Принцип эквивалентности (гравитационной и
инертной масс)
— закон природы, который устанавлива-

ет аналогию между свободным движением тел, наблюдаемым в неинерциальной (ускоренной) системе отсчета, и движением тел в поле тяготения. Принцип утверждает эквивалентность ускоренных систем отсчета некоторому гравитационному полю.

9. Принцип дополнительности Бора — принцип, со
гласно которому существуют две взаимоисключающие и
дополняющие друг друга импульсно-энергетическая и про
странственно-временная картины состояний микрообъек
та, получаемые при взаимодействии его с соответствую
щими измерительными приборами. Одновременные точ
ные данные о них невозможны.

  1. Принцип соответствия Бора — утверждение, состоящее в том, что новая, более глубокая и общая теория, своими следствиями и выводами должна включать в себя старую теорию как предельный случай (например, релятивистская механика Эйнштейна при малых скоростях — классическую механику Ньютона и др.).
  2. Принцип калибровочной инвариантности (компенсации) в теории полей — преобразование, задающее переход от одних значений, характеризующих поле величин, к другим, оставляющим без изменения физически определенные, наблюдаемые (измеряемые) на опыте параметры поля. Например, в электродинамике — переход от одних значений электрических потенциалов к другим, оставляющий без изменения значения напряженностей электрического и магнитного полей, плотность их энергии и т. д. Компенсация за такое преобразование сводится к появлению агента, переносящего то или иное свойство микрообъекта в пространстве и времени — например, агента взаимодействия электрических зарядов посредством (или в виде) электромагнитного поля или фотонов. Данный принцип является всеобщим (всеобъемлющим) принципом природы.

Нижеследующие принципы:

  1. Принцип спонтанного нарушения симметрии и
  2. Принцип перенормируемости являются характерными для мира элементарных частиц и связаны с методами их классификации на унитарной основе и исключения бесконечных величин, возникающих в квантово-полевых теориях.

Термодинамические принципы:

  1. Первый принцип (первое начало) термодинамики,
  2. Второй принцип (второе начало) термодинамики,
  3. Третий принцип (третье начало) термодинамики,
  4. Принцип минимума производства энтропии в достаточной полноте истолкованы нами в заключительной части данного пункта, тогда как основанный на них
  5. Принцип необратимости (движения и времени) в естествознании еще только начинает формироваться и не имеет общепринятого толкования и осмысления.

Представленные выше фундаментальные принципы позволяют сформулировать основные выводы о физической природе материального мира частиц, полей и их систем. Ниже, в виде обобщающих положений, они приведены с указанием имен ученых, внесших определяющий вклад в их творение и осмысление.

Физика частиц и полей

1. Макромир состоит из дискретных и континуальных объектов — частиц и полей (волн) (Демокрит, Зенон Элей-ский, Дальтон, Фарадей, Максвелл).

2. Движение объектов относительно и сохраняется в отсутствие взаимодействий. Состояния покоя и равномерного прямолинейного движения неразличимы никакими физическими опытами (Галилей, Ньютон, Лоренц, Пуанкаре, Эйнштейн, Нетер).

  • Поля (свет, гравитация, в том числе) распространяются с постоянной предельной скоростью (Майкельсон, Морли, Эйнштейн), объединяя в единое многообразие пространство и время — в пространство-время (Минковский).
  • Корпускулярная (дискретная) и континуальная (полевая) форма материи в микромире дуально едина (де Бройль, Шредингер, Дирак), калибровочно-инвариантна (Лоренц, Янг, Миллс), имея проявлением неустранимую неопределенность их пространственно-временных и им-пульсно-энергетических состояний (Гейзенберг) и взаимопревращений друг в друга.
  • Разнообразные свойства всех микрообъектов кванто-ванно минимизированы — электрический заряд (Милликен), спин (Гаудсмит, Уленбек), магнитный момент (Бор), изос-пин (Гейзенберг), странность (Гелл-Манн), барионный заряд, аромат, цвет — и переносятся, передаются от одного к другому связывающими их агентами — фотонами, мезонами, векторными бозонами, глюонами (Планк, Эйнштейн, Тамм, Иваненко, Ферми, Юкава, Янг, Миллс, Гелл-Манн, Цвейг, Боголюбов, Матвеев, Фадеев, Салам, Вайнберг).
  • Искривленное пространство-время макро- и мегамиров (Клиффорд, Лобачевский, Риман) создано материей (Эйнштейн) и простирается (распространяется), расширяясь (Фридман, Хаббл), от предельно плоских (Евклид) локальных областей к предельно искривленным областям — черным дырам (Лаплас, Оппенгеймер, Снайдер, Пенроуз, Хокинг).

Физика термодинамических систем

1. а) внутренняя энергия систем в основном зависит от температуры и может совершать работу (Карно, Майер, Джоуль, Ленд, Гельмгольц) либо б) работа систем возможна за счет понижения температуры.

  • а) мера неупорядоченности (хаоса) системы, энтропия, остается неизменной только для обратимых процессов, возрастая при всех остальных (Клаузиус, Больцман) либо б) мера хаоса (энтропия) в системе нарастает в результате обмена с внешней средой, порождая необратимость движения и времени.
  • а) энтропия систем стремится к нулю при стремлении к нулю абсолютной температуры (Нернст) либо б) наивысший порядок в системе может быть достигнут при абсолютном нуле температуры.
  • Производство энтропии системой минимально в стационарном состоянии (Пригожин).

О L-BRO Administrator

Администратори сомона.

Добавить комментарий

Ваш адрес email не будет опубликован.